Théorème de la bijection entre segments — Si f est une fonction continue et strictement monotone sur un intervalle [a, b] et à valeurs réelles, alors elle constitue une bijection entre [a, b] et l'intervalle fermé dont les bornes sont f(a) et f(b). Quand une fonction est inversible ? Fonction pour laquelle les variables dépendante et indépendante qui définissent la relation entre le domaine et l'image peuvent être échangées de manière à ce que la nouvelle relation obtenue soit aussi une fonction. En d'autres termes, une fonction est inversible lorsque sa réciproque est aussi une fonction.
Comment démontrer qu'un ensemble n'est pas vide ?
Notation On va noter P∗(N) l'ensemble des parties non vides de N. Toute partie non-vide de N admet un minimum. ∀P : P(N), si P est non vide alors ∃m : N,m ∈ P et ∀p : P,m ≤ p. On montre par récurrence sur n que si P ∩ [0..n] est non vide, alors P admet un élément plus petit que tous les autres.
Quelle est la borne supérieure ? En mathématiques, les notions de borne supérieure et borne inférieure d'un ensemble de nombres réels interviennent en analyse, comme cas particulier de la définition générale suivante : la borne supérieure (ou le supremum) d'une partie d'un ensemble (partiellement) ordonné est le plus petit de ses majorants.
Comment montrer qu'une suite converge ou diverge ?
- On dit qu'une suite un converge vers un réel L si pour tout intervalle ouvert U contenant L, tous les termes de la suite appartiennent à U sauf un nombre fini. On note alors : L est la limite de la suite un et elle est unique.
- Une suite est divergente si elle n'est pas convergente.
Comment savoir si une intégrale converge ou diverge ? Une intégrale impropre est convergente si sa valeur est finie, dans le cas contraire elle est divergente.
Comment calculer la limite d'une suite ?
On considère un nombre q strictement positif et la suite (un) définie pour tout entier positif ou nul n par un=qn. La règle de calcul de limite est simple : si 0<q<1 alors limqn=0. si q=1 alors limqn=1.
Comment comparer des suites ? Si deux suites (un) et (vn) sont équivalentes, alors elles ont le même signe à partir d'un certain rang. Si deux suites (un) et (vn) sont équivalentes, alors l'une converge si et seulement si l'autre converge. Dans ce cas, leurs limites sont égales.